

# Reliability and validity of the Wrightington classification of elbow fracture dislocation



**Z Hamoodi**, J Singh, M Elvey, AC Watts Wrightington Hospital, Wigan, United Kingdom

Anteromedial Bifacet/Basal Comminuted Diaphyseal

A B B+ C D D+

Combined/

Diaphyseal

Diaphyseal

Diaphyseal

Diaphyseal

Diaphyseal

Diaphyseal

Diaphyseal

Diaphyseal

#### **AIM**

The aim of this study was to assess the reliability and validity of Wrightington classification of elbow fracture dislocations.



### Methodology



- A blinded study using radiographs and computed tomography (CT) scans
- All adult patients (>16) with elbow fracture dislocation between 2010 and 2018.

- Seven observers reviewed preoperative radiographs and CT scan images twice with a minimum 4-week interval.
- 3 groups were analysed: (1) XR alone, (2) 2D CT only, (3) 2D CT & 3D reconstructions

#### **Primary outcomes:**

- Inter-observer and intra-observer reliability (assessed using Fleiss' kappa and Cohen kappa, respectively)
- Validity (assessed as percentage agreement between observers and intraoperative findings being the gold standard)



### Intra-observer reliability



- 60 patients were identified and 48 Patients included
- 12 patients excluded because PACS team could not upload the images to CDs due to initial scan performed in different hospitals.

| Modality used | Kappa<br>(Median) | IQR       | p-value                        |
|---------------|-------------------|-----------|--------------------------------|
| Radiograph    | 0.75              | 0.62-0.79 | Radiographs vs 2D CT (p=0.067) |
| 2D CT scan    | 0.77              | 0.73-0.94 | Radiographs vs 3D CT (p=0.017) |
| 2D + 3D CT    | 0.89              | 0.77-0.93 | 2D CT vs 3D CT (p=0.43)        |



# Interobserver reliability



| Modality used  | Categorical | Kappa | SE (95% CI)             | p-value |  |  |
|----------------|-------------|-------|-------------------------|---------|--|--|
| First attempt  |             |       |                         |         |  |  |
| Radiograph     | Moderate    | 0.49  | 0.015 (0.489 to 0.491)  | 0.000   |  |  |
| 2D CT          | Substantial | 0.70  | 0.020 (0.699 to 0.0702) | 0.000   |  |  |
| 2D and 3D CT   | Substantial | 0.71  | 0.021 (0.704 to 0.707)  | 0.000   |  |  |
| Second attempt |             |       |                         |         |  |  |
| Radiograph     | Moderate    | 0.51  | 0.016 (0.504 to 0.506)  | 0.000   |  |  |
| 2D CT          | Substantial | 0.71  | 0.020 (0.709 to 0.712)  | 0.000   |  |  |
| 2D and 3D CT   | Substantial | 0.73  | 0.021 (0.727 to 0.729)  | 0.000   |  |  |



Radiograph

## **Validity**



| Modality used | Percentage agreement Median | IQR    | Difference (p-value)                                                                  |  |  |  |
|---------------|-----------------------------|--------|---------------------------------------------------------------------------------------|--|--|--|
| First round   |                             |        |                                                                                       |  |  |  |
| Radiograph    | 73%                         | 48-79  | Radiographs vs 2D CT (p= 0.018) Radiographs vs 3D CT (p=0.018) 2D CT vs 3D CT (p=799) |  |  |  |
| 2D CT scan    | 86%                         | 75-98  |                                                                                       |  |  |  |
| 2D + 3D CT    | 87%                         | 74-100 | 20 CT VS 30 CT (p=799)                                                                |  |  |  |
| Second round  |                             |        |                                                                                       |  |  |  |

53-77

**2D CT scan** 88% 75-95 **2D + 3D CT** 84% 79-97

73%

Radiographs vs 2D CT (p=0.018)
Radiographs vs 3D CT (p=0.028)
2D CT vs 3D CT (p=0.67)







 The Wrightington classification system is a reliable and valid method of classifying fracture-dislocations of the elbow.

 CT scans are significantly more accurate than radiographs when identifying the pattern of injury, with good intra- and interobserver reproducibility.